
Field Arithmetic

3.1 Representation of Extension Fields

BN-curves are defined over prime fields, which means the computation of a pairing over
a BN-curve relies on arithmetic over finite fields. Hence, efficient implementation of the
underlying extension fields is crucial for fast pairing computation. Arithmetic over Fq2 is
required for manipulating points on the twisted curve, and the computation of the Miller
function. Moreover, accumulating and multiplying values to compute fn,P and the final
exponentiation involves arithmetic over Fq12 . IEEE P1363.3 [1] recommends using towers to
represent Fqk . Construction of tower extensions for the purpose of pairing computation has
been explored in [8, 17, 24, 7]. Next we outline and analyze two approaches for constructing
tower fields.

Note that if q ≡ 3 mod 4, then both −1 and −2 are quadratic non-residues and we can
represent Fq2 by Fq[i]/(i2 − β) where β = −1 or −2. Multiplications by i are required
throughout the pairing computation, for instance when multiplying two extension field
elements. Representing Fq2 as above, multiplications by i are very cheap, requiring either
only a simple negation or a negation and an addition. Having the choice of 2 elements for
β also leaves us some choice of representation for implementing higher extensions. When
x is odd, we get Q(x) ≡ 3 mod 4, and when x is even, we get Q(x) ≡ 1 mod 4. When x
is even, neither −1 nor −2 is guaranteed to be a quadratic non-residue so multiplication
by i can end up being relatively costly. Therefore, when computing BN-curves using the
polynomial Q(x), we restrict ourselves to choosing odd x, so that q ≡ 3 mod 4.

Geovandro et al. [17] recommend a family of implementation friendly BN-curves which
has a very natural choice for the suitable representation of extension fields. We give a
description of this sub-family and outline its benefits.

Definition 3.1.1. A BN-curve Eb : y2 = x3 + b over Fq is called friendly if q ≡ 3 mod 4
and there exist c, d ∈ F∗q such that either b = c4 + d6 or b = c6 + 4d4.

One can use the following properties of friendly BN-curves to implement the pairing com-
putation in an efficient manner:

1. Let ξ = c2 + d3i if b = c4 + d6, or ξ = c3 + 2d2i if b = c6 + 4d4. Then, b = ξξ. Lemma
2 of [17] says that ξ is neither a square nor a cube in Fp2 . Thus, we can use ξ to
construct Fq12 as follows:

Fq6 = Fq2 [v]/(v3 − ξ).

Fq12 = Fq6 [w]/(w2 − v).

2. Theorem 1 in [17] says that the curve E ′b given by:

E ′b : y2 = x3 +
b

ξ
= x3 + ξ

gives a D-type sextic twist of Eb.

3. Generators for E ′(Fp2)[n] can be found as [h]G, where h = 2p− n and G = (−di, c)
or G = (−c, d(1− i)), respectively.

Using the above sub-family, square or cube detection is not necessary to build field exten-
sions or generate a twist. Moreover, one does not have to compute the order of the curve
which may generate the sextic twist, as the correct twist is immediately revealed.

Another approach to finding appropriate irreducible polynomials for constructing tower
extensions of fields is to use the following theorem of Benger and Scott [8]:

Theorem 3.1.2 ([8]). Let m > 1, n > 0 be integers, q an odd prime and α ∈ F∗qn. The
binomial xm − α is irreducible in Fqn [x] if the following two conditions are satisfied:

• Each prime factor p of m divides q − 1 and NFqn/Fq(α) ∈ Fq is not a p-th residue in
Fq;

• If m ≡ 0 mod 4 then q4 ≡ 1 mod 4.

Based on the above theorem, Benger and Scott [8] give the following construction for BN
primes congruent to 3 mod 8. The same conclusion is also drawn in Shirase [41]:

Construction 3.1.3. Let q = q(x) be the prime characteristic of the field over which
a BN-curve is defined. If x ≡ 7 or 11 mod 12 then y6 − (1 +

√
−1) is irreducible over

Fq2 = Fq(
√
−1).

We are able to use the above construction in 2/3rds of the cases when q ≡ 3 mod 8; i.e.
x ≡ 3 mod 4. It only fails when x ≡ 2 mod 3. Since we are restricting ourselves to choosing
odd x, we also need to consider the case when x ≡ 1 mod 4. Following [8], we give the
following construction for BN-primes congruent to 7 mod 8:

Construction 3.1.4. Let q = q(x) be the prime characteristic of the field over which a
BN-curve is defined. If x ≡ 2, 3, 4, 6, 7 or 8 mod 9 then y6 − (1 +

√
−2) is irreducible over

Fq2 = Fq(
√
−2).

Proof. We will show that the conditions in Theorem 3.1.2 are satisfied two-thirds of the
time for m = 6, n = 2, when q a BN-prime congruent to 7 mod (8), and α = 1 +

√
−2.

To satisfy condition (2), it suffices to show that q4 ≡ 1 mod 4. This is trivial because
q ≡ 3 mod 4. Now, NFqn/Fq(α) = (1 +

√
−2)(1 −

√
−2) = 3; and the prime factors of 12

are 2 and 3. To satisfy condition (1) we need to show the following:

• 2 | q − 1 and 3 | q − 1;

• 3 is not a cubic or a quadratic residue in Fq.

Recall that q is given by the polynomial q(x) = 36x4 + 36x3 + 24x2 + 6x + 1 for some
x ≡ 1 mod 4. As a result 2 | q − 1 and 3 | q − 1. Morevoer, x ≡ 1 mod 4 implies that
x ≡ 1, 5 or 9 mod 12, which in turn implies that q ≡ 7 mod 12. As a result, 3 is not a
quadratic residue in Fq. We now need to determine when 3 is a cubic residue in Fq. A
prime q ≡ 1 mod 3 can be written as q = a2 +3b2 for some integers a, b. It was conjectured
by Euler and proven by Gauss that 3 is a cubic residue if and only if 9 | b, or 9 | (a±b) [26].
For BN-primes we can write q(x) = a(x) + 3x2, where a(x) = 6x2 + 3x+ 1 [41]. Hence, 3 is
a cubic residue if 9 | x, or 9 | 6x2 + 4x+ 1, or 9 | 6x2 + 2x+ 1. This occurs when x ≡ 0, 1,
or 5 mod 9 which happens with probability 1/3. Thus 3 is a cubic non-residue modulo q
for approximately 2/3rds of the values q ≡ 7 mod 8.

When deciding on the above construction for BN-primes congruent to 7 mod 8, we tried
to choose α so that NFqn/Fq(α) is minimized. This means that the polynomials used to
construct tower extensions will have small coefficents, so arithmetic will be efficient.

3.1.1 Towering Scheme for Primes Congruent to 3 mod 8

Aranha et al. [4] use E : y2 = x3 +2 for the BN-curve, and x = −(262 +255 +1) to generate
the 254-bit prime Q(x). As a result, both methods outlined above yield the same towering
scheme for the prime field over which this curve is defined:

− Fq2 = Fq[i]/(i2 − β), where β = −1.

− Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

− Fq12 = Fq6 [w]/(w2 − v).

This towering scheme is ideal since it keeps the coefficents of the irreducible polynomials
as small as possible. At some points during the pairing computation, it is required that
finite field elements be multiplied by ξ (for example, when multiplying two elements over
Fq12). Using the above towering scheme, multiplication by i requires one negation over Fq,
and multiplication by ξ requires only one addition over Fq2 . For primes congruent to 3
mod 8, we use the above towering scheme.

We represent all prime and extension fields using a towering scheme as above, varying
the choice of ξ and v to suit the prime q in question.

3.1.2 Towering Scheme for Primes Congruent to 7 mod 8

We now illustrate explicit towering schemes for primes congruent to 7 mod 8 using the
446-bit prime given by Q(x), where x = 2110 + 236 + 1. This prime was recommended
in [17] and used in [3] to implement the O-Ate pairing. In this case, the above scheme does
not work because 1 + i is not a cubic non-residue in Fp2 . Following the recommendation
in [3], the BN-curve used is:

E257 : y2 = x3 + 257

• Fq2 = Fq[i]/(i2 − β), where β = −1.

• Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 16 + i.

• Fq12 = Fq6 [w]/(w2 − v).

Here β is minimal, however ξ is slightly large. Minimizing β might be beneficial because a
large chunk of the arithmetic during pairing computation is performed over Fq2 . Multipli-
cation by i requires a negation; multiplication by ξ requires five additions in Fq2 .

To increase the efficiency of the pairing computation we can try a towering scheme as
dictated by Construction 2. This will make multiplication by ξ cheaper:

• Fq2 = Fq[i]/(i2 − β), where β = −2.

• Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

• Fq12 = Fq6 [w]/(w2 − v).

We refer to the above scheme as Scheme 2. Here, multiplication by i requires one addition
and one negation in Fq, and multiplication by ξ requires two additions in Fq2 . Note that
here we have taken the opposite approach to the one suggested in [17]. Instead of choosing
a curve that gives the right twist, and then letting these choices dictate the towering
scheme, we first choose a towering scheme that optimizes extension field arithmetic and
deal with the curve later. As illustrated in Appendix A using the curve BN446, using
Scheme 2 results in a faster pairing than using Scheme 1. Since we did not follow the
recommendations of [17], we lose the benefit of being able to generate towering schemes and
twists without performing additional mathematical operations. However, in pairing-based
protocols, these operations need only be performed once, whereas there may be thousands
of pairing computations required. As the bulk of the pairing computation requires extension
field arithmetic, optimizing the arithmetic leads to better performance overall.

We then get the following towering scheme which we refer to as Scheme 1:

3.2 Field Arithmetic

3.2.1 Lazy Reduction

Before proceeding, we fix some notation regarding field operation algorithms and costs.
Lower case variables denote single-precision integers, and upper case variables denote
double-precision integers. × represents multiplication without reduction, and ⊗ repre-
sents multiplication with reduction. The letters m, s, a, and i denote a multiplication,
squaring, addition, and inversion in Fq respectively. Likewise m̃, s̃, ã, and ı̃ denote multi-
plication, squaring, addition and inversion in Fq2 respectively. mu, m̃u, su and s̃u denote
unreduced multiplications and squarings in the respective field. We write mb, mi, mξ, and
mv for multiplication by b, i, ξ, and v respectively. To perform arithmetic over finite fields,
we use Karatsuba multiplication and squaring with lazy reduction as in [4]. We extend
their idea of lazy reduction to field inversion. By applying lazy reduction, we are able
to save one Fq reduction per Fq2 inversion, and 13 Fq reductions per Fq12 inversion. This
speeds up the inversion routine in Fq2 by 4%, and in Fq12 by 10%. Algorithms 3.1, 3.2, and
3.3 present our routines for inversion in the extension fields using lazy reduction. All costs
for algorithms presented in this chapter are for the 254-bit BN prime used in [4].

Algorithm 3.1 Inversion in Fq2 (Cost = i + 4m + 3r + 2a)

Input: a = a0 + a1i; a0, a1 ∈ Fq
Output: c = a−1 ∈ Fq2
T0 ← a0 × a0

T1 ← −β · (a1 × a1)
T0 ← T0 + T1

t0 ← T0 mod p
t← t−1

0 mod p
c0 ← a0 ⊗ t
c1 ← −(a1 ⊗ t)
return c = c0 + c1i

3.2.2 Multiplication of Sparse Elements

Using the above towering scheme, the elements {1, v, v2, w, vw, v2w} form a basis for Fq12
over Fq2 . When using projective and jacobian coordinates, the line function in the Miller

Algorithm 3.2 Inversion in Fq6 (Cost = ı̃ + 9m̃ + 3s̃ + 9r̃ + 14ã)

Input: a = a0 + a1v + a2v
2; a0, a1, a2 ∈ Fq2

Output: c = a−1 ∈ Fq6
T0 ← a0 × a0

V0 ← a1 × a2

V0 ← ξV0

V0 ← T0 − V0

v0 ← V0 mod p
T0 ← a2 × a2

T0 ← ξT0

V1 ← a1 × a0

V1 ← T0 − V1

v1 ← V1 mod p
T0 ← a1 × a1

V2 ← a2 × a0

V2 ← T0 − V2

v2 ← V2 mod p
c1 ← a1 ⊗ v2

c1 ← ξc1

c0 ← a0 ⊗ v0

c2 ← a2 ⊗ v1

c2 ← ξc2

t0 ← c0 + c1

t0 ← t0 + c2

t0 ← t−1
0 mod p

c0 ← v0 ⊗ t0
c1 ← v1 ⊗ t0
c2 ← v2 ⊗ t0
return c = c0 + c1v + c2v

2

Algorithm 3.3 Inversion in Fq12 (Cost = ı̃ + 15m̃ + 9s̃ + 18r̃ + 69ã)

Input: a = a0 + a1w; a0, a1 ∈ Fq6
Output: c = a−1 ∈ Fq12
T0 ← a0 × a0

T1 ← v · (a1 × a1)
T0 ← T0 − T1

t0 ← T0 mod p
t0 ← t−1

0 mod p
c0 ← a0 ⊗ t0
c1 ← −a1 ⊗ t0
return c = c0 + c1w

loop evaluates to a sparse Fq12 element containing only three of the six basis elements. In
the case of a D-type twist, the line function evaluates to an element of the form

a0 + a1w + a2vw, a0, a1, a2 ∈ Fq2 .

In the case of an M-type twist, it evaluates to an element of the form -

a0 + a1v + a2vw, a0, a1, a2 ∈ Fq2 .

In both cases, when multiplying the line function evaluation with fi,Q(P), one can utilize
its sparseness to avoid full Fq12 arithmetic. We use Algorithm 3.4 to multiply a sparse
Fq12 element with a non-sparse Fq12 element. In this case, the sparse element arises as the
evaluation of a line function when a D-type twist is involved. Note that multiplication by
v involves a multiplication by ξ, which in turn is equal to one Fq2 addition. The dense-
sparse multiplication algorithm presented in Algorithms 3.4 and 3.5 requires 17 fewer Fq2
additions than in [4]. The dense-sparse multiplication algorithm is similar when we are
using an M-type twist, and requires an extra multiplication by v.

3.2.3 Mapping from the Twisted Curve to the Original Curve

Suppose we take ξ (as used in the towering scheme) to be the cubic and quadratic non-
residue to generate the sextic twist of the BN-curve E. In the case of a D-type twist, the
untwisting isomorphism is given by:

Ψ: (x, y) 7→ (ξ
1
3x, ξ

1
2y) = (w2x,w3y).

Algorithm 3.4 D-type sparse-dense Multiplication in Fq12 (Cost = 13m̃ + 6r̃ + 44ã)

Input: a = a0 + a1w + a2vw, a0, a1, a2 ∈ Fq2 ; b = b0 + b1w, b0, b1 ∈ Fq6
Output: ab ∈ Fq12
A0 ← a0 × b0[0], A1 ← a0 × b0[1], A2 ← a0 × b0[2]
A← A0 + A1v + A2v

2

B ← Fq6SparseMul(a1w + a2vw, b1)
c0 ← a0 + a1, c1 ← a2, c2 ← 0
c← c0 + c1v + c2v

2

d← b0 + b1

E ← Fq6SparseMul(c, d)
F ← E − (A+B)
G← Bv
H ← A+G
c0 ← H mod p
c1 ← F mod p
return c = c0 + c1w

Algorithm 3.5 Fq6SparseMul (Cost = 5m̃ + 12ã)

Input: a = a0 + a1v, a0, a1 ∈ Fq2 ; b = b0 + b1v + b2v
2, b0, b1, b2 ∈ Fq2

Output: ab ∈ Fq6
A← a0 × b0, B ← a1 × b1

C ← a1 × b2ξ
D ← A+ C
e← a0 + a1, f ← b0 + b1

E ← e× f
G← E − (A+B)
H ← a0 × b2

I ← H +B
return D +Gv + Iv2

Following the construction of the tower extensions, both w3 and w2 are basis elements used
to represent an element in Fp12 . Therefore, the untwisting map is almost free.

The efficient untwisting described above is lost if we use a M-type twist where the un-
twisting isomorphism is given by:

Ψ: (x, y) 7→ (ξ−
2
3x, ξ−

1
2y) = (ξ−1w4x, ξ−1w3y).

The cost of the untwisting in this case is 2 multiplications by ξ. However, if we compute
the pairing value on the twisted curve instead of the original curve, then we do not need
to use the untwisting map. Instead, we require the twisting map which is given by

Ψ−1 : (x, y) 7→ (w2x,w3y).

Therefore, in order to make the pairing computation as efficient as possible, we compute
the pairing on the original curve E when a D-type twist is involved, and on the twisted
curve E ′ when an M-type twist is involved.

3.3 Final Exponentiation

As discussed earlier, the hard part of the final exponentiation is raising to the exponent
q6+1
n

. In this section we focus on computing this for BN-curves. We can further split the
remaining exponent into two additional parts:

q6 + 1

n
= (q2 + 1)

q4 − q2 + 1

n
.

Raising to q2 +1 is two applications of the Frobenius operator, which is considered a cheap
operation (details to follow). Again, we are left with a hard to compute exponent —
q4−q2+1

n
. We outline the fastest way currently known to compute this exponent, described

by Fuentes-Castañeda et al. [16].

We observe that if the Tate pairing is raised to some power, then the new function given by
e(P,Q)m also gives a bilinear pairing. This pairing is non-degenerate as long as n - m since

e(P,Q) evaluates to an element in µn. Hence, instead of using q4−q2+1
n

, we use a multiple
of it which still gives a valid pairing.

Recall that for BN-curves, q and n are polynomials in x. Therefore, q4−q2+1
n

is also a
polynomial in x. We call this polynomial d(x). Fuentes-Castañeda et al. [16] showed that

2x(6x2 + 3x+ 1)d(x) = 1 + 6x+ 12x2 + 12x3

+ (4x+ 6x2 + 12x3)p(x)

+ (6x+ 6x2 + 12x3)p(x)2

+ (−1 + 4x+ 6x2 + 12x3)p(x)3.

The above value can be computed as follows. First, the following exponentiations are
computed

f 7→ fx 7→ f 2x 7→ f 4x 7→ f 6x 7→ f 6x2 7→ f 12x2 7→ f 12x3

which requires three exponentiations by x, three squarings and one multiplication. Then
we compute the terms a = f 12x3f 6x2f 6x and b = a(f 2x)−1 which require 3 multiplications.
Finally, the final pairing value is obtained as

af 6x2fbpap
2

(bf−1)p
3

which requires 6 multiplications and 6 Frobenius operations. In total, this part of the final
exponentiation requires three exponentiations by x, three squarings, ten multiplications,
and three Frobenius operations. In comparison, the previous fastest known method requires
three additional multiplications and an additional squaring [4].

3.3.1 Exponentiation by x

The final exponentiation requires three exponentiations by x. This is traditionally done
using a square-and-multiply method. Before we raise the output of the Miller loop to the
power x, we exponentiate it to (q6 − 1)(q2 + 1). This ensures that the value we need to
exponentiate to the power x lies in the cyclotomic subgroup Gφ6(Fq2).
Definition 3.3.1. We denote by Gφ12(Fq) the cyclotomic subgroup of F∗q12 . This is the

subgroup of all elements α ∈ Fq12 such that αq
4−q2+1 = 1.

For more details on Gφ12(Fq), refer to [18]. Now, we have

(q6 − 1)(q2 + 1) = (q6 − 1)
(q6 + 1)

q4 − q2 + 1
=

q12 − 1

q4 − q2 + 1
.

Thus, an element raised to (q6 − 1)(q2 + 1) lies in Gφ12(Fq). Fast formulas for computing
squarings in Gφ12(Fq) are given in [4] which we use in our implementation. To compute a
square, an element is first compressed, then squared in compressed form, and then decom-
pressed. It is not known how to perform multiplication of compressed elements. Hence,
when raising an element to the exponent x, one may keep squaring in compressed form,
but when multiplication is required, one needs to decompress the elements. A compressed
squaring requires 6s̃, 28ã, and 3mξ. A decompression requires 1ı̃, 2m̃, 3s̃, 9ã, and 2mξ.
Let h be the Hamming weight of x and l be the bit-length of x. Using Montogomery’s
simultaneous inversion trick, an exponentiation by x requires l compressed squarings, l− 1
multiplications in Fq12 , and h(3m̃+ 3s̃+ 9ã+ 2mξ) + 3(h− 1)m̃+ ı̃ additional operations.

3.4 The Frobenius Operator

Let a = α + iβ ∈ Fq2 where i =
√
−1 is an adjoined square root. Then

aq = (α + iβ)q

= αq + iqβq

= α + i3β (since q ≡ 3 mod 4)

= α− iβ.

Thus, computing aq requires one base field addition.

Now, suppose A =
5∑
i=0

aiw
i ∈ Fq12 , with each ai ∈ Fq2 and w is defined as in the towering

schemes given in subsections 3.1.1 and 3.1.2. By examining the polynomial q(x), we note
that q ≡ 1 mod 6. Then,

